Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972658

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Camundongos , Humanos , Animais , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/patologia , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Fator 2 de Diferenciação de Crescimento/metabolismo
2.
Nat Immunol ; 24(8): 1318-1330, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308665

RESUMO

Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, ß1AR and ß2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Transdução de Sinais , Camundongos Transgênicos , Imunoterapia , Microambiente Tumoral
3.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862513

RESUMO

The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Camundongos , Humanos , Animais , Vitamina D/metabolismo , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Cálcio/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Homeostase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459739

RESUMO

Carboxylesterase 1d (Ces1d) is a crucial enzyme with a wide range of activities in multiple tissues. It has been reported to localize predominantly in ER. Here, we found that Ces1d levels are significantly increased in obese patients with type 2 diabetes. Intriguingly, a high level of Ces1d translocates onto lipid droplets where it digests the lipids to produce a unique set of fatty acids. We further revealed that adipose tissue-specific Ces1d knock-out (FKO) mice gained more body weight with increased fat mass during a high fat-diet challenge. The FKO mice exhibited impaired glucose and lipid metabolism and developed exacerbated liver steatosis. Mechanistically, deficiency of Ces1d induced abnormally large lipid droplet deposition in the adipocytes, causing ectopic accumulation of triglycerides in other peripheral tissues. Furthermore, loss of Ces1d diminished the circulating free fatty acids serving as signaling molecules to trigger the epigenetic regulations of energy metabolism via lipid-sensing transcriptional factors, such as HNF4α. The metabolic disorders induced an unhealthy microenvironment in the metabolically active tissues, ultimately leading to systemic insulin resistance.


Assuntos
Carboxilesterase , Diabetes Mellitus Tipo 2 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Carboxilesterase/genética , Carboxilesterase/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Humanos , Camundongos
5.
Am J Physiol Endocrinol Metab ; 322(5): E436-E445, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344393

RESUMO

The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.


Assuntos
Proteínas de Ligação ao GTP , Obesidade , Receptor Tipo 4 de Melanocortina , Animais , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Ligação ao GTP/metabolismo , Locomoção , Camundongos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/genética
6.
Nat Commun ; 13(1): 22, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013148

RESUMO

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with ß2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective ß2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of ß-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle ß2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic ß2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating ß2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Clembuterol/farmacologia , Hipoglicemiantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenômenos Bioquímicos , Clembuterol/metabolismo , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina , Masculino , Doenças Metabólicas , Metabolômica , Camundongos , Camundongos Knockout , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
7.
J Invest Dermatol ; 142(1): 53-64.e3, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280464

RESUMO

Manipulation of adrenergic signaling has been shown experimentally and clinically to affect hair follicle growth. In this study, we provide direct evidence that canonical cAMP/CRE-binding protein signaling through adrenergic receptors can regulate hair follicle stem cell (HFSC) activation and hair cycle. We found that CRE-binding protein activation is regulated through the hair cycle and coincides with HFSC activation. Both isoproterenol and procaterol, agonists of adrenergic receptors, show the capacity to activate the hair cycle in mice. Furthermore, deletion of ADRB2 receptor, which is thought to mediate sympathetic nervous system regulation of HFSCs, was sufficient to block HFSC activation. Downstream, stimulation of adenylyl cyclase with forskolin or inhibition of phosphodiesterase to increase cAMP accumulation or direct application of cAMP was each sufficient to promote HFSC activation and accelerate initiation of hair cycle. Genetic induction of a Designer Receptors Exclusively Activated by Designer Drug allele showed that G-protein coupled receptor/GαS stimulation, specifically in HFSCs, promoted the activation of the hair cycle. Finally, we provide evidence that G-protein coupled receptor/CRE-binding protein signaling can potentially act on HFSCs by promoting glycolytic metabolism, which was previously shown to stimulate HFSC activation. Together, these data provide mechanistic insights into the role of sympathetic innervation on HFSC function.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , AMP Cíclico/metabolismo , Folículo Piloso/fisiologia , Cabelo/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Glicólise , Cabelo/patologia , Isoproterenol/metabolismo , Queratina-15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Procaterol/metabolismo , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais , Sistema Nervoso Simpático
8.
Front Physiol ; 12: 725782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512393

RESUMO

The activity of the Epithelial Na+ Channel (ENaC) in renal principal cells (PC) fine-tunes sodium excretion and consequently, affects blood pressure. The Gs-adenylyl cyclase-cAMP signal transduction pathway is believed to play a central role in the normal control of ENaC activity in PCs. The current study quantifies the importance of this signaling pathway to the regulation of ENaC activity in vivo using a knock-in mouse that has conditional expression of Gs-DREADD (designer receptors exclusively activated by designer drugs; GsD) in renal PCs. The GsD mouse also contains a cAMP response element-luciferase reporter transgene for non-invasive bioluminescence monitoring of cAMP signaling. Clozapine N-oxide (CNO) was used to selectively and temporally stimulate GsD. Treatment with CNO significantly increased luciferase bioluminescence in the kidneys of PC-specific GsD but not control mice. CNO also significantly increased the activity of ENaC in principal cells in PC-specific GsD mice compared to untreated knock-in mice and CNO treated littermate controls. The cell permeable cAMP analog, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, significantly increased the activity and expression in the plasma membrane of recombinant ENaC expressed in CHO and COS-7 cells, respectively. Treatment of PC-specific GsD mice with CNO rapidly and significantly decreased urinary Na+ excretion compared to untreated PC-specific GsD mice and treated littermate controls. This decrease in Na+ excretion in response to CNO in PC-specific GsD mice was similar in magnitude and timing as that induced by the selective vasopressin receptor 2 agonist, desmopressin, in wild type mice. These findings demonstrate for the first time that targeted activation of Gs signaling exclusively in PCs is sufficient to increase ENaC activity and decrease dependent urinary Na+ excretion in live animals.

9.
Elife ; 102021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160349

RESUMO

Bone formation and resorption are typically coupled, such that the efficacy of anabolic osteoporosis treatments may be limited by bone destruction. The multi-kinase inhibitor YKL-05-099 potently inhibits salt inducible kinases (SIKs) and may represent a promising new class of bone anabolic agents. Here, we report that YKL-05-099 increases bone formation in hypogonadal female mice without increasing bone resorption. Postnatal mice with inducible, global deletion of SIK2 and SIK3 show increased bone mass, increased bone formation, and, distinct from the effects of YKL-05-099, increased bone resorption. No cell-intrinsic role of SIKs in osteoclasts was noted. In addition to blocking SIKs, YKL-05-099 also binds and inhibits CSF1R, the receptor for the osteoclastogenic cytokine M-CSF. Modeling reveals that YKL-05-099 binds to SIK2 and CSF1R in a similar manner. Dual targeting of SIK2/3 and CSF1R induces bone formation without concomitantly increasing bone resorption and thereby may overcome limitations of most current anabolic osteoporosis therapies.


Assuntos
Reabsorção Óssea/genética , Osteogênese/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Feminino , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-31428057

RESUMO

cAMP is one of the earliest described mediators of hormone action in response to physiologic stress that allows acute stress responses and adaptation in every tissue. The classic role of cAMP signaling in metabolic tissues is to regulate nutrient partitioning. In response to acute stress, such as epinephrine released during strenuous exercise or fasting, intramuscular cAMP liberates glucose from glycogen and fatty acids from triglycerides. In the long-term, activation of Gs-coupled GPCRs stimulates muscle growth (hypertrophy) and metabolic adaptation through multiple pathways that culminate in a net increase of protein synthesis, mitochondrial biogenesis, and improved metabolic efficiency. This review focuses on regulation, function, and transcriptional targets of CREB (cAMP response element binding protein) and CRTCs (CREB regulated transcriptional coactivators) in skeletal muscle and the potential for targeting this pathway to sustain muscle mass and metabolic function in type 2 diabetes and cancer. Although the muscle-autonomous roles of these proteins might render them excellent targets for both conditions, pharmacologic targeting must be approached with caution. Gain of CREB-CRTC function is associated with excess liver glucose output in type 2 diabetes, and growing evidence implicates CREB-CRTC activation in proliferation and invasion of different types of cancer cells. We conclude that deeper investigation to identify skeletal muscle specific regulatory mechanisms that govern CREB-CRTC transcriptional activity is needed to safely take advantage of their potent effects to invigorate skeletal muscle to potentially improve health in people with type 2 diabetes and cancer.

11.
J Clin Invest ; 129(12): 5187-5203, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31430259

RESUMO

The parathyroid hormone 1 receptor (PTH1R) mediates the biologic actions of parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP). Here, we showed that salt-inducible kinases (SIKs) are key kinases that control the skeletal actions downstream of PTH1R and that this GPCR, when activated, inhibited cellular SIK activity. Sik gene deletion led to phenotypic changes that were remarkably similar to models of increased PTH1R signaling. In growth plate chondrocytes, PTHrP inhibited SIK3, and ablation of this kinase in proliferating chondrocytes rescued perinatal lethality of PTHrP-null mice. Combined deletion of Sik2 and Sik3 in osteoblasts and osteocytes led to a dramatic increase in bone mass that closely resembled the skeletal and molecular phenotypes observed when these bone cells express a constitutively active PTH1R that causes Jansen's metaphyseal chondrodysplasia. Finally, genetic evidence demonstrated that class IIa histone deacetylases were key PTH1R-regulated SIK substrates in both chondrocytes and osteocytes. Taken together, our findings establish that SIK inhibition is central to PTH1R action in bone development and remodeling. Furthermore, this work highlights the key role of cAMP-regulated SIKs downstream of GPCR action.


Assuntos
Desenvolvimento Ósseo , Remodelação Óssea , Hormônio Paratireóideo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Condrócitos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Deleção de Genes , Hipertrofia , Masculino , Camundongos , Camundongos Knockout , Mutação , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Transcriptoma
12.
Mol Metab ; 27: 83-91, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31272886

RESUMO

OBJECTIVE: Given the worldwide epidemics of obesity and type 2 diabetes, novel antidiabetic and appetite-suppressing drugs are urgently needed. Adipocytes play a central role in the regulation of whole-body glucose and energy homeostasis. The goal of this study was to examine the metabolic effects of acute and chronic activation of Gs signaling selectively in adipocytes (activated Gs stimulates cAMP production), both in lean and obese mice. METHODS: To address this question, we generated a novel mutant mouse strain (adipo-GsD mice) that expressed a Gs-coupled designer G protein-coupled receptor (Gs DREADD or short GsD) selectively in adipocytes. Importantly, the GsD receptor can only be activated by administration of an exogenous agent (CNO) that is otherwise pharmacologically inert. The adipo-GsD mice were maintained on either regular chow or a high-fat diet and then subjected to a comprehensive series of metabolic tests. RESULTS: Pharmacological (CNO) activation of the GsD receptor in adipocytes of adipo-GsD mice caused profound improvements in glucose homeostasis and protected mice against the metabolic deficits associated with the consumption of a calorie-rich diet. Moreover, chronic activation of Gs signaling in adipocytes led to a striking increase in energy expenditure and reduced food intake, resulting in a decrease in body weight and fat mass when mice consumed a calorie-rich diet. CONCLUSION: Systematic studies with a newly developed mouse model enabled us to assess the metabolic consequences caused by acute or chronic activation of Gs signaling selectively in adipocytes. Most strikingly, chronic activation of this pathway led to reduced body fat mass and restored normal glucose homeostasis in obese mice. These findings are of considerable relevance for the development of novel antidiabetic and anti-obesity drugs.


Assuntos
Adipócitos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
13.
Mol Metab ; 27: 11-21, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279640

RESUMO

OBJECTIVE: The sympathetic nervous system (SNS) is a key regulator of the metabolic and endocrine functions of adipose tissue. Increased SNS outflow promotes fat mobilization, stimulates non-shivering thermogenesis, promotes browning, and inhibits leptin production. Most of these effects are attributed to norepinephrine activation of the Gs-coupled beta adrenergic receptors located on the surface of the adipocytes. Evidence suggests that other adrenergic receptor subtypes, including the Gi-coupled alpha 2 adrenergic receptors might also mediate the SNS effects on adipose tissue. However, the impact of acute stimulation of adipocyte Gs and Gi has never been reported. METHODS: We harness the power of chemogenetics to develop unique mouse models allowing the specific and spatiotemporal stimulation of adipose tissue Gi and Gs signaling. We evaluated the impact of chemogenetic stimulation of these pathways on glucose homeostasis, lipolysis, leptin production, and gene expression. RESULTS: Stimulation of Gs signaling in adipocytes induced rapid and sustained hypoglycemia. These hypoglycemic effects were secondary to increased insulin release, likely consequent to increased lipolysis. Notably, we also observed differences in gene regulation and ex vivo lipolysis in different adipose depots. In contrast, acute stimulation of Gi signaling in adipose tissue did not affect glucose metabolism or lipolysis, but regulated leptin production. CONCLUSION: Our data highlight the significance of adipose Gs signaling in regulating systemic glucose homeostasis. We also found previously unappreciated heterogeneity across adipose depots following acute stimulation. Together, these results highlight the complex interactions of GPCR signaling in adipose tissue and demonstrate the usefulness of chemogenetic technology to better understand adipocyte function.


Assuntos
Adipócitos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Animais , Homeostase , Insulina/metabolismo , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
14.
Cancer Discov ; 9(11): 1606-1627, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350328

RESUMO

Mutations in the LKB1 (also known as STK11) tumor suppressor are the third most frequent genetic alteration in non-small cell lung cancer (NSCLC). LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates 14 AMPK family kinases ("AMPKRs"). The function of many of the AMPKRs remains obscure, and which are most critical to the tumor-suppressive function of LKB1 remains unknown. Here, we combine CRISPR and genetic analysis of the AMPKR family in NSCLC cell lines and mouse models, revealing a surprising critical role for the SIK subfamily. Conditional genetic loss of Sik1 revealed increased tumor growth in mouse models of Kras-dependent lung cancer, which was further enhanced by loss of the related kinase Sik3. As most known substrates of the SIKs control transcription, gene-expression analysis was performed, revealing upregulation of AP1 and IL6 signaling in common between LKB1- and SIK1/3-deficient tumors. The SIK substrate CRTC2 was required for this effect, as well as for proliferation benefits from SIK loss. SIGNIFICANCE: The tumor suppressor LKB1/STK11 encodes a serine/threonine kinase frequently inactivated in NSCLC. LKB1 activates 14 downstream kinases in the AMPK family controlling growth and metabolism, although which kinases are critical for LKB1 tumor-suppressor function has remained an enigma. Here we unexpectedly found that two understudied kinases, SIK1 and SIK3, are critical targets in lung cancer.This article is highlighted in the In This Issue feature, p. 1469.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Transplante de Neoplasias , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Carga Tumoral
15.
Methods Mol Biol ; 1947: 361-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969428

RESUMO

Engineered G protein-coupled receptors (DREADDs, designer receptors exclusively activated by designer drugs) are convenient tools for specific activation of GPCR signaling in many cell types. DREADDs have been utilized as research tools to study numerous cellular and physiologic processes, including regulation of neuronal activity, behavior, and metabolism. Mice with random insertion transgenes and adeno-associated viruses have been widely used to express DREADDs in individual cell types. We recently created and characterized ROSA26-GsDREADD knock-in mice to allow Cre recombinase-dependent expression of a Gαs-coupled DREADD (GsD) fused to GFP in distinct cell populations in vivo. These animals also harbor a CREB-activated luciferase reporter gene for analysis of CREB activity by in vivo imaging, ex vivo imaging, or biochemical reporter assays. In this chapter, we provide detailed methods for breeding GsD animals, inducing GsD expression, stimulating GsD activity, and measuring basal and stimulated CREB reporter bioluminescence in tissues in vivo, ex vivo, and in vitro. These animals are available from our laboratory for non-profit research.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Genes Reporter , Processamento de Imagem Assistida por Computador/métodos , Medições Luminescentes/métodos , Moduladores de Transporte de Membrana/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Integrases/metabolismo , Camundongos , Especificidade de Órgãos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
16.
Nat Commun ; 9(1): 4349, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341289

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of liver-specific gene expression with potent tumor suppressor activity, yet many liver tumors express HNF4α. This study reveals that P1-HNF4α, the predominant isoform expressed in the adult liver, inhibits expression of tumor promoting genes in a circadian manner. In contrast, an additional isoform of HNF4α, driven by an alternative promoter (P2-HNF4α), is induced in HNF4α-positive human hepatocellular carcinoma (HCC). P2-HNF4α represses the circadian clock gene ARNTL (BMAL1), which is robustly expressed in healthy hepatocytes, and causes nuclear to cytoplasmic re-localization of P1-HNF4α. We reveal mechanisms underlying the incompatibility of BMAL1 and P2-HNF4α in HCC, and demonstrate that forced expression of BMAL1 in HNF4α-positive HCC prevents the growth of tumors in vivo. These data suggest that manipulation of the circadian clock in HNF4α-positive HCC could be a tractable strategy to inhibit tumor growth and progression in the liver.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Carcinoma Hepatocelular/metabolismo , Fator 4 Nuclear de Hepatócito/fisiologia , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição ARNTL/genética , Transporte Ativo do Núcleo Celular , Carcinoma Hepatocelular/patologia , Relógios Circadianos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/patologia , Isoformas de Proteínas/fisiologia
17.
Neurol Genet ; 3(4): e174, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28761930

RESUMO

OBJECTIVE: To assess the prevalence and clinical features of individuals affected by spinocerebellar ataxia 36 (SCA36) at a large tertiary referral center in the United States. METHODS: A total of 577 patients with undiagnosed sporadic or familial cerebellar ataxia comprehensively evaluated at a tertiary referral ataxia center were molecularly evaluated for SCA36. Repeat primed PCR and fragment analysis were used to screen for the presence of a repeat expansion in the NOP56 gene. RESULTS: Fragment analysis of triplet repeat primed PCR products identified a GGCCTG hexanucleotide repeat expansion in intron 1 of NOP56 in 4 index cases. These 4 SCA36-positive families comprised 2 distinct ethnic groups: white (European) (2) and Asian (Japanese [1] and Vietnamese [1]). Individuals affected by SCA36 exhibited typical clinical features with gait ataxia and age at onset ranging between 35 and 50 years. Patients also suffered from ataxic or spastic limbs, altered reflexes, abnormal ocular movement, and cognitive impairment. CONCLUSIONS: In a US population, SCA36 was observed to be a rare disorder, accounting for 0.7% (4/577 index cases) of disease in a large undiagnosed ataxia cohort.

18.
JCI Insight ; 2(14)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28724789

RESUMO

Diet-induced obesity (DIO) represents the major cause for the current obesity epidemic, but the mechanism underlying DIO is unclear. ß-Adrenergic receptors (ß-ARs) play a major role in sympathetic nervous system-mediated (SNS-mediated) diet-induced energy expenditure (EE). Rbc express abundant ß-ARs; however, a potential role for rbc in DIO remains untested. Here, we demonstrated that high-fat, high-caloric diet (HFD) feeding increased both EE and blood O2 content, and the HFD-induced increases in blood O2 level and in body weight gain were negatively correlated. Deficiency of ß-ARs in rbc reduced glycolysis and ATP levels, diminished HFD-induced increases in both blood O2 content and EE, and resulted in DIO. Importantly, specific activation of cAMP signaling in rbc promoted HFD-induced EE and reduced HFD-induced tissue hypoxia independent of obesity. Both HFD and pharmacological activation cAMP signaling in rbc led to increased glycolysis and ATP levels. These results identify a previously unknown role for rbc ß-ARs in mediating the SNS action on HFD-induced EE by increasing O2 supply, and they demonstrate that HFD-induced EE is limited by blood O2 availability and can be augenmented by increased O2 supply.

19.
Mol Cell Biol ; 37(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28167604

RESUMO

Hundreds of hormones and ligands stimulate cyclic AMP (cAMP) signaling in different tissues through the activation of G-protein-coupled receptors (GPCRs). Although the functions and individual effectors of cAMP signaling are well characterized in many tissues, pleiotropic effects of GPCR agonists limit investigations of physiological functions of cAMP signaling in individual cell types at different developmental stages in vivo To facilitate studies of cAMP signaling in specific cell populations in vivo, we harnessed the power of DREADD (designer receptors exclusively activated by designer drugs) technology by creating ROSA26-based knock-in mice for the conditional expression of a Gs-coupled DREADD (rM3Ds-green fluorescent protein [GFP], or "GsD"). After Cre recombinase expression, GsD is activated temporally by the administration of the ligand clozapine N-oxide (CNO). In the same allele, we engineered a CREB-luciferase reporter transgene for noninvasive bioluminescence monitoring of CREB activity. After viral delivery of Cre recombinase to hepatocytes in vivo, GsD is expressed and allows CNO-dependent cAMP signaling and glycogen breakdown. The long-term expression of GsD in the liver results in constitutive CREB activity and hyperglycemia. ROSA26-Gs-DREADD mice can be used to study the physiological effects of cAMP signaling, acute or chronic, in liver or any tissue or cell type for which transgenic or viral Cre drivers are available.


Assuntos
AMP Cíclico/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , RNA não Traduzido/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Clozapina/análogos & derivados , Clozapina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Glucose/metabolismo , Proteínas de Fluorescência Verde/genética , Hiperglicemia/metabolismo , Integrases/genética , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
20.
PLoS One ; 11(9): e0163576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648558

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0158274.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...